West Nile Virus in Montana

Dr. Greg Johnson
Veterinary Entomologist
Montana State University

West Nile Virus in Montana

- Mosquitoes
 - Trapping & vector ecology
- WNV
 - Introduction & movement
 - Transmission
 - Immunity
 - Impacts
- Mosquito management
- A guess at the future

Mosquitoes

- WNV Statewide Surveillance 2003 present
 - Species composition
 - Seasonal abundance
 - Distribution
 - Monitoring WNV activity
- Primary vector is Culex tarsalis

(Hale. 2007. MS thesis. MSU., Friesen and Johnson. 2013. Med Vet Ent.)

Species	+/tested
Cx. tarsalis	134/389
Ae. vexans	3/136
Cu. inornata	1/57
Cx. pipiens	0/53
Aedes spp.	0/12
Anopheles spp.	0/10
Cx. salinarius	0/1
Total	138/658

Culex tarsalis

- Widely distributed in the Great Plains and western US
- LT catches <20% of total
- Associated with riparian zones, wetlands, irrigated hay/grass production
- Detected in most areas of Montana
- Higher densities east of Continental Divide

Cx. tarsalis

Overwinter as adults

 Oviposits in fresh, standing water with vegetation (sloughs, wetlands, oxbows, irrigated fields)

Cx. tarsalis seasonal abundance

Cx. tarsalis

Blood meal analyses – Medicine Lake NWR

Cx. tarsalis

60/109 avian: 17 species

49/109 mammalian: 4 species

Ae. vexans

9/78 avian: 2 species

69/78 mammalian: 4 species

Cs. inornata

4/38 avian: 4 species

34/38 mammalian: 3 species

(Johnson et al. 2010. EID. 16:406-411, Friesen and Johnson. 2013. JAMCA . 29:102-107)

@ Mayo Foundation for Medical Education and Research. All rights reserved.

Factors that regulate WNV transmission

Complex interaction of biological and environmental factors

- Biological: vector species, vector density, pathogen, susceptible animal host, reservoir and amplifying hosts, etc.
- Environmental: temperature, precipitation, wind, RH, vegetation, landscape, etc.
- Timing and convergence of biological and physical factors is critical for an outbreak to occur.

(Gage et al. 2005. Am J Prev Med. 35: 436-450)

- 1999-2004
 - Invasive phase
 - Chxt by explosive outbreaks
- 2002
 - 1st entered plains states
- 2003
 - Massive epidemic
 - U.S. approximately 10,000 human cases
 - Montana 222 cases, 4 deaths

Equilibrium phase, 2005 – present

- Dampening of infection in birds and mammals
 - Recovery and survival

- Overall human cases declined in U.S.
 - Periodic, focal outbreaks
 - Montana 2007
 - U.S. 2012

Montana WNV human case report

Year	Total	Fatalities	
2002	2	0	
2003	222	4	
2004	6	0	
2005	25	0	
2006	34	0	
2007	202	4	
2008	5	0	
2009	5	0	
2010	0	0	
2011	1	0	
2012	6	1	

- > 300 species of birds killed
- WNV strain NY99 was more virulent to birds than Isr98 strain.
- Mid-west corvids (crows and jays) became a hallmark of WNV transmission.
- Montana hallmark species are greater sage-grouse and American white pelican

WNV - Montana

Medicine Lake NWR

- Vector
 - Extensive habitat for *Cx. tarsalis*
- Reservoir and amplifying hosts
 - 125 species of migratory birds
 - Opportunity to introduce virus
- Susceptible animal hosts
 - 2,000 pelican chicks, shorebirds, waterfowl, etc.
- Biological and environmental factors conducive to amplification and transmission

AWP Mortality

		Doolo		Vector	Ch: al-
Year	LTI	Pools + # tested	MIR/1,000	Vector Index	Chick Mortality
2005	108	5/68	1.4	1.1	400
2006	6	2/64	0.6	0.4	385
2007	438	28/87	7.3	3.2	450
2008	12	1/9	2.2	2.4	<50
2009	35	5/145	0.7	0.4	113
2010	23	0	0	0	<50
2011	181	1/400	0.2	.03	<50
2012					<50
2013		13/54			250+

WNV Transmission

- Cx. tarsalis may trigger the WNV epizootic
- Chick behavior may contribute to explosion
 - Chicks can amplify WNV
 - Bird to bird contact
 - Oral and cloacal swabs indicate viral shedding
- Other ectoparasites
- Pelican lice, other mosquito species, stable flies, soft ticks

(Johnson et al. 2010. EID, Johnson et al. 2010. J. Med. Ent.)

WNV Immunity

- Pre- and post-WNV exposure 2006 2008
 - Medicine Lake, Chase Lake and Bitter Lake
 - 350 3 wk old chicks 5% + for WNV antibodies
 - 259 post WNV exposure, 39% + for WNV antibodies
- More variability in chick mortality which might suggest immunity is developing
- Significant number of chicks appear to be surviving infection
- Frequent exposure to WNV?

WNV population impacts

Pelicans initially greatly impacted by WNV

- Is this an increase in resistance or immunity to WNV infection?
- Or due to other biological or environmental factors?
- Wildlife biologists are making cautious predictions

Long lived species with low reproductive potential

WNV in Greater Sage-Grouse

WNV cycle

- Cx. tarsalis primary vector in sagebrush habitat
 - Bird-to-bird transmission possible
 - Other arthropod species unlikely
- Virus source migratory and resident birds (passerine)
- Amplifying host
 - Species are unclear but may involve sage-grouse
- Ideal weather pattern
 - Wet spring, hot summer, drought conditions

WNV in Greater Sage-Grouse

Mortality

- Confirmed in 10 states and 1 province
- Radio-collared and unmarked birds
- Mortality estimates w/o confirmation skeptical

Immunity

- High mortality rates during WNV outbreaks
- Low levels of immunity to WNV infection in captive and wild birds
- MT/WY
 - 2005, 10% seropositive birds (58)
 - 2006, <2% seropositive (109)
- Resistance to infection projected to increase slowly in the future

WNV in Greater Sage-Grouse

Population impacts

- Significant declines reported in local/regional populations
- Represents a continued risk to sage-grouse populations
- Distribution of Cx. tarsalis and WNV is not continuous across the landscape
- Unexposed birds can repopulate local affected areas when overall populations are high

Mosquito Management

- Difficult but not impossible to achieve in rural landscape
- Sites are numerous, may be difficult to find and access
- Insecticides are effective but require monitoring; timing of application is important
- Modifying sites can be effective but may result in producing habitat suitable for other pests or vectors

Future Prediction

- WNV is here to stay
- Represents a continued risk to sage-grouse populations

To facilitate protection:

- Identify areas of Cx. tarsalis production and monitor for WNV transmission
- Monitor bird populations for mortality and survival
- Develop mosquito management programs in sage-grouse areas highly vulnerable to WNV transmission